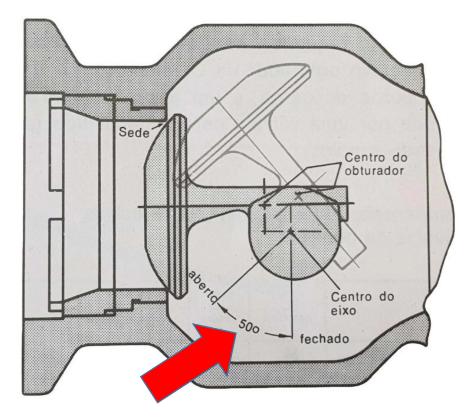

Data: 10/12/14 Página 1 de 9

VEC®

VEC® X GLOBO ROTATIVA


Data: 10/12/14 Página 2 de 9

VEC®

O desempenho de uma válvula de controle, excetuando-se os detalhes construtivos, está diretamente vinculado a diversos parâmetros funcionais. Merecem destaque os seguintes:

- Resolução,
- Característica inerente,
- Largura da faixa de vazão controlável ("rangeability")

Iniciando com o parâmetro <u>RESOLUÇÃO</u>, segue, em corte transversal, a representação gráfica do interior de uma válvula globo rotativa típica.

A seta vermelha da figura coloca em destaque que o curso da válvula globo rotativa é 50° para 100% da vazão, ao passo que o curso da VEC® é 90° para 100% da vazão.

A consequência desta diferença de curso é a menor resolução da válvula globo rotativa.

A resolução da válvula de controle está relacionada com a fração de curso, abrindo ou fechando, capaz de provocar mudança na vazão controlada em resposta ao sinal de controle, conforme a seguir é demonstrado.

Primeiramente fica estabelecido que há igualdade funcional nos respectivos conjuntos controladores de movimento e posição

O intervalo (span) do sinal analógico 4-20 mA é 16 mA.

O curso da válvula globo rotativa é 50° e a resolução é dada por:

$$Rg = Cg / S$$

Onde,

- Rg => Resolução da válvula globo rotativa
- O Cg => Curso da válvula globo rotativa em graus
- O S => Intervalo do sinal de controle em mA

Data: 10/12/14 Página 3 de 9

VEC®

Numericamente, resulta

$$Rg = 50 / 16 = 3,125^{\circ}/mA$$

significando que o curso varia 3,125° à cada mA do sinal de controle.

O curso da VEC® é 90° e a resolução é dada por:

$$Re = Ce / S$$

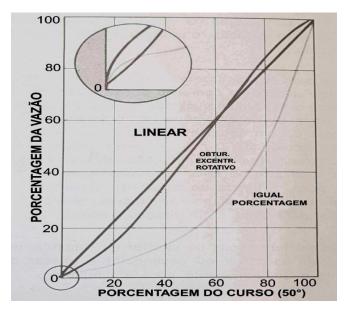
Onde,

- Re => Resolução da VEC[®]
- Ce => Curso da VEC® em graus
- O S => Intervalo do sinal de controle em mA

Numericamente, resulta

$$Re = 90 / 16 = 5,625 \circ /mA$$

significando que o curso varia 5,625° à cada mA do sinal de controle.


O quociente de Re / Rg mostra que a resolução da VEC® é 1,8 vezes maior do que a resolução da válvula globo rotativa.

Em outra forma de análise; bastam apenas 0,556 mA para a VEC® executar o mesmo curso que a válvula globo rotativa realiza com 1 mA.

A VEC ® tem melhor resposta ao sinal de controle.

O gráfico que segue, mostra a **RELAÇÃO CURSO X VAZÃO** da válvula globo rotativa sob pressão diferencial constante.

A forma como a vazão evolui em consequência da mudança da abertura da válvula em incremento iguais, determina o ganho e a característica inerente.

O gráfico mostra que a característica inerente da válvula globo rotativa é <u>quase linear</u>, isto é <u>a válvula tem característica inerente</u> <u>indefinida</u> e está longe de poder desempenhar a característica amplamente utilizada IGUAL PORCENTAGEM sem auxílio de algum equipamento.

Para fins de análise comparativa, segue uma tabela de CV X curso típicos da válvula globo rotativa LINEAR.

Através desta tabela, será determinada a linearidade e ganho da válvula globo rotativa.

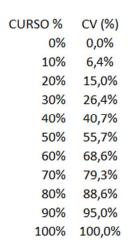
Data: 10/12/14 Página 4 de 9

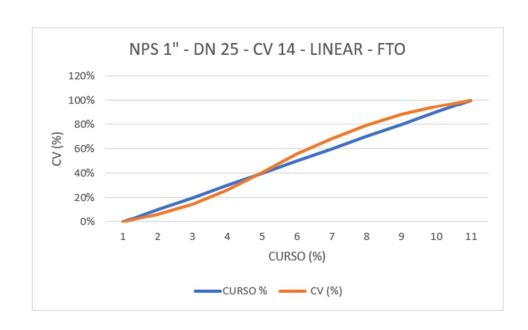
VEC®

(C_v) and (F_l) Versus Travel

Flow Direction: Flow to Open Flow Characteristics: Linear

ANSI Class: 150 through 600


Sizes: 1 in. through 12 in. [DN 25-300]


	Per	cent of P	lug Rotat	tion		10	20	30	40	50	60	70	80	90	100
		F _L Ful	l Area			0.96	0.93	0.91	0.89	0.88	0.87	0.87	0.86	0.86	0.85
	F, Re	duced Ar	ea (.6, .4,	& .2)		0.96	0.93	0.91	0.89	0.88	88.0	0.88	0.88	0.88	0.88
Valve	Size	Orific	e Dia.	Ac Stem 1						Rated C	,				
in.	DN	in.	mm	in.	mm										
		.321	8.2	3.50	89	0.4	0.8	1.1	1.4	1.7	2.0	23	2.5	2.7	2.8
1	25	.500	12.7	3.50	89	0.5	0.9	1.4	2.0	2.7	3.5	4.2	4.8	5.2	5.6
•		.579	14.7	3.50	89	0.6	1.3	2.2	3.1	4.2	5.3	6.4	7.2	7.9	8.4
		.718	18.2	3.50	89	0.9	2.1	3.7	5.7	7.8	9.6	11.1	12.4	13.3	14
		.750	19.1	3.50	89	1.1	2.1	3.3	4.7	6.5	8.4	9.9	11.2	12.3	13.2
11/2	40	.907	23.0	3.50	89	1.4	3.2	5.1	7.A	10.0	12.7	15.0	17.1	18.6	19.8
		1.125	28.6	3.50	89	2.0	5.0	8.6	13	19	22	26	29	32	33
		1.000	25.4	3.50	89	1.6	3.2	5.0	7.2	9.8	12.6	15.0	17.0	18.7	50
2	50	1.159	29.4	3.50	89	2.1	4.8	7.7	11.2	15.1	19.1	22.7	25.8	28.2	30
		1.437	36.5	3.50	89	3.1	7.5	13.3	20.5	28	34.2	39.8	44.2	47.5	50
		1.500	38.1	5.75	146	4.9	9.A	14.1	20.0	26.5	33.5	39.8	45.4	50.2	54
3	80	1.874	47.6	5.75	146	5.7	12.1	19.6	27.6	37.5	47.9	58.4	68.0	75.9	87
		2.324	59.0	5.75	146	8.8	17.7	29.8	44.5	60.7	78.3	96.2	113	127	135
		2.000	50.8	5.75	146	8.4	16.1	24.0	34.1	45.1	57.1	67.8	77.A	85.6	92
4	100	2.419	61.4	5.75	146	9.7	20.7	33.4	47.0	63.8	81.6	99.A	116	129	138
		3.000	76.2	5.75	146	15.0	30.2	50.8	75.8	104	133	164	193	216	230
		3.000	76.2	7.25	184	18.2	34.9	52.2	74.1	98.0	124	147	168	186	200
6	150	3.629	92.2	7.25	184	21.2	44.9	72.7	102	139	177	216	252	281	300
		4,500	114	7.25	184	32.7	65.7	110	165	225	290	356	419	470	500
		3.797	96.4	7.25	184	22.0	44.2	71.9	107	150	196	241	283	317	340
8	200	4.840	123	7.25	184	31.3	63.6	114	178	246	313	374	425	468	510
		6.000	152	7.25	184	42.8	111	201	316	434	542	639	725	798	850
		4,746	121	7.25	184	33.7	67.6	110	164	230	300	369	432	485	52
10	250	6.050	154	7.25	184	47.8	97.3	175	273	376	478	572	650	716	78
		7.500	191	7.25	184	65.5	170	307	483	663	828	977	1109	1221	130
		5.780	147	7.25	184	45.3	91.0	148	221	309	403	497	582	652	70
12	300	7.460	189	7.25	184	64.4	131	235	367	506	644	769	875	964	1050
46	200	9.250	235	7.25	184	88.1	228	919	650	893	1115	1315	1493	1664	1750

Data: 10/12/14 Página 5 de 9

VEC®

O gráfico mostra a curva CV vs Curso de apenas uma bitola, mas pode ser estendido para todas as outras bitolas. A linha em AZUL é referente ao curso, mas a linha em LARANJA, referente ao CV, não acompanha a linearidade do curso.


A "linearização" é conseguida através do came do posicionador. Um fabricante tradicional afirma que a característica inerente da válvula (abertura rápida) pode ser facilmente alterada de indefinida para linear, igual porcentagem ou outras, pelo uso do seu posicionador; integrante da válvula e fornecido montado no conjunto.

A característica inerente linear, teoricamente, tem ganho constante. O ganho de uma válvula de controle deve estar contido no intervalo 0,5 a 2. O ganho é definido pelo quociente da relação percentual entre a variação da vazão (CV) pela variação do curso:

$$G_V = \Delta_{CV} / \Delta_{CURSO}$$

Segue planilha da válvula globo rotativa NPS 1" – CV 14 – FTO com característica inerente linear conforme dados da tabela anterior para apuração do ganho.

CURSO %	CV	DELTA CV	% DELTA CV	% DELTA CURSO	GANHO
-	0	_	-	-	-
0,10	0,9	0,90	0,06	0,10	0,64
0,20	2,1	1,20	0,09	0,10	0,86
0,30	3,7	1,60	0,11	0,10	1,14
0,40	5,7	2,00	0,14	0,10	1,43
0,50	7,8	2,10	0,15	0,10	1,50
0,60	9,6	1,80	0,13	0,10	1,29
0,70	11,1	1,50	0,11	0,10	1,07
0,80	12,4	1,30	0,09	0,10	0,93
0,90	13,3	0,90	0,06	0,10	0,64
1,00	14	0,70	0,05	0,10	0,50

O gráfico mostra que a válvula globo rotativa possui característica inerente linear através do perfil do came de realimentação do posicionador. A característica inerente sem o came corretor se equipara a uma característica abertura rápida. O perfil do came dedicado modela a característica atuando sobre o curso do obturador.

Esta afirmação significa que não é recomendável substituir um posicionador integrante da válvula, fornecido montado no conjunto, cujo came tem perfil exclusivamente desenvolvido para "caracterizar", por um outro posicionador de uso em válvulas

Data: 10/12/14 Página 6 de 9

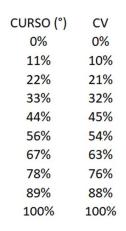
VEC®

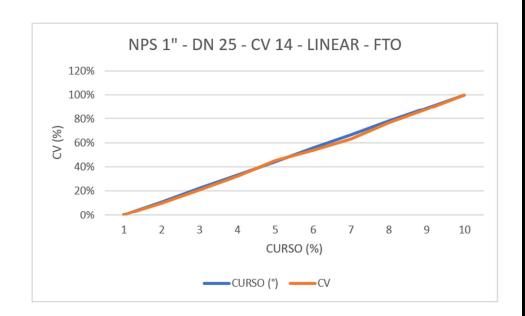
cujas características inerentes são resultado do perfil do obturador e que independem do perfil do came do posicionador, por exemplo $VEC^{®}$ e globo linear.

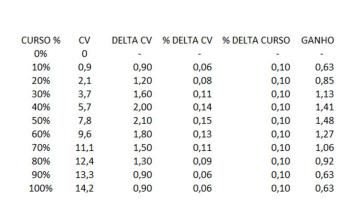
A válvula globo rotativa operando com posicionador de uso geral terá característica inerente equiparável a de uma válvula própria para serviço "tudo ou nada" e, em consequência, a qualidade do controle do processo fica comprometida pois a válvula tem dificuldade de corrigir plenamente o desvio. A sintonia das ações (P.I.D.) do controlador é dificultada por que não há coerência entre os ganhos do controlador e da válvula de controle. Os posicionadores com realimentação através de came dedicado são utilizados nas válvulas globo com obturador excêntrico rotativo para PROPORCIONAR CARACTERÍSTICAS INERENTES DE IGUAL PORCENTAGEM E LINEAR.

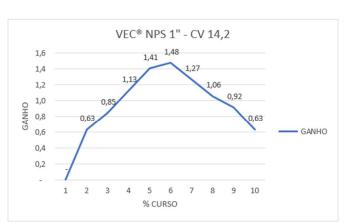
Prosseguindo com a análise, segue tabela de CV da VEC® de característica inerente LINEAR.

COI	COEFICIENTE DE VAZÃO (CV) CONFORME ANSI/ISA S75.01 / S75.02										
DN VEC	ORIFÍCIO LINEAR	VARI	AÇÃO	DO CV	CON	ORME	GRAL	J DE A	BERTU	IRA DA	VEC
		0,0	10,0	20,0	30,0	40,0	50,0	60,0	70,0	80,0	90,0
	LI	0,0	0,4	0,9	1,4	1,9	2,3	2,6	3,2	3,7	4,2
1/2"	L2	0,0	0,8	1,6	2,5	3,5	4,2	4,9	6,0	6,8	7,8
	L3	0,0	1,0	2,2	3,5	4,8	5,7	6,7	8,2	9,4	10,7
	LI	0,0	0,9	1,9	2,9	4,1	4,9	5,7	7,0	8,0	9,1
3/4"	L2	0,0	1,6	3,5	5,4	7,6	9,0	10,6	12,8	14,8	16,8
	L3	0,0	2,2	4,8	7,4	10,3	12,3	14,4	17,5	20,1	22,9
	LI	0,0	1,4	3,0	4,6	6,4	7,6	8,9	10,8	12,5	14,2
1"	L2	0,0	2,6	5,5	8,5	11,8	14,1	16,5	20,1	23,1	26,3
	L3	0,0	3,5	7,4	11,5	16,0	19,1	22,3	27,1	31,2	35,5
	LI	0,0	3,1	6,7	10,4	14,4	17,2	20,1	24,4	28,1	32,0
11/2"	L2	0,0	5,9	12,5	19,4	27,0	32,2	37,7	45,8	52,6	59,9
	L3	0,0	7,9	16,7	26,1	36,2	43,2	50,6	61,5	70,7	80,5
	LI	0,0	5,5	11,7	18,2	25,3	30,2	35,3	42,9	49,3	56,2
2"	L2	0,0	10,4	22,1	34,4	47,8	57,0	8,88	81,1	93,2	106,2
	L3	0,0	14,0	29,8	46,4	64,4	76,8	90,0	109,3	125,6	143,1
	LI	0,0	8,8	18,3	28,5	39,6	47,3	55,4	67,3	77,4	88,1
2 1/2"	L2	0,0	16,1	34,2	53,3	74,0	88,3	103,5	125,7	144,4	164,5
	L3	0,0	21,7	46,0	71,6	99,5	118,7	139,0	168,8	194,0	221,0
	LI	0,0	12,6	26,7	41,5	57,7	8,89	80,6	97,9	112,6	128,2
3"	L2	0,0	23,5	49,8	77,6	107,8	128,6	150,6	183,0	210,3	239,5
	L3	0,0	31,5	66,9	104,2	144,7	172,7	202,3	245,7	282,4	321,6
	LI	0,0	22,5	47,7	74,2	103,1	123,0	144,1	175,0	201,1	229,1
4"	L2	0,0	41,9	89,0	138,7	192,6	229,8	269,2	327,0	375,8	428,0
	L3	0,0	56,3	119,5	186,2	258,6	308,6	361,5	439,1	504,6	574,7
	LI	0,0	50,5	107,2	167,0	231,9	276,8	324,2	393,8	452,5	515,4
6"	L2	0,0	94,4	200,3	312,0	433,4	517,1	605,7	735,7	845,5	963,0
	L3	0,0	126,8	269,2	419,3	582,3	694,9	813,9	988,6	1136,1	1294,0
	LI	0,0	89,8	190,5	296,8	412,2	491,8	576,1	699,7	804,2	915,9
8"	L2	0,0	167,7	355,9	554,4	770,0	918,8	1076,2	1307,2	1502,3	1711,0
	L3	0,0	225,5	478,5	745,4	1035,3	1235,4	1447,1	1757,7	2019,9	2300,6
	LI	0,0	142,1	301,6	469,8	652,5	778,7	912,1	1107,8	1273,1	1450,0
10"	L2	0,0	264,1	560,6	873,2	1212,8	1447,2	1695,2	2059,0	2366,2	2695,0
	L3	0,0	355,2	753,8	1174,2	1630,8	1946,1	2279,5	2768,7	3181,9	3624,0
	LI	0,0	199,6	423,7	0,088	916,7	1093,9	1281,3	1556,3	1788,5	2037,0
12"	L2	0,0	373,2	792,1	1233,8	1713,6	2044,9	2395,2	2909,3	3343,4	3808,0
	L3	0,0	501,8	1065,0	1658,9	2304,0	2749,4	3220,5	3911,7	4495,4	5120,0


A CARACTERÍSTICA INERENTE DA VEC® É RESULTADO DO PERFIL DO ORIFÍCIO DE CONTROLE E INDEPENDE DO CAME DO POSICIONADOR.


O gráfico que segue mostra que a válvula esfera de controle VEC® possui característica inerente linear, obtida através do perfil do orificio caracterizado. O posicionador a ser utilizado é de uso geral com característica linear para não interferir na característica inerente, seja linear, igual porcentagem ou dedicada.


Data: 10/12/14 Página 7 de 9


VEC®

Segue planilha da válvula esfera de controle VEC® NPS 1" - CV 14,2 com característica inerente linear para determinação do ganho.

A característica inerente linear, teoricamente, tem ganho constante. O ganho de uma válvula de controle deve estar no intervalo 0,5 a 2. É definido pelo quociente da relação percentual entre a variação da vazão (CV) pela variação do curso:

$$Gv = \Delta_{CV} / \Delta_{CURSO}$$

O gráfico comprova que a válvula esfera de controle VEC®, possui característica inerente linear.

A IMPORTÂNCIA DA RANGEABILIDADE EM VÁLVULAS DE CONTROLE

A relação entre a máxima e a mínima vazão controlável é denominada como rangeabilidade da válvula de controle. Quanto maior a rangeabilidade, melhor será o controle. Exemplo:

A VEC® comprovou sua eficácia, controlando pH com vazão de sulfato de alumínio de 0,2 a 30 litros/h, range 150:1, característica igual porcentagem e permitindo total estabilidade no controle.

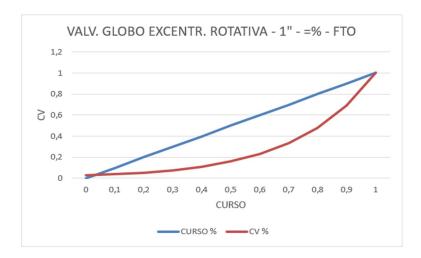
Importante frisar que enquanto a perda de carga através da válvula (ΔP) for constante, os termos % de vazão, % de perda de carga (ΔP) e % do coeficiente da válvula (CV) são intercambiáveis.

Data: 10/12/14 Página 8 de 9

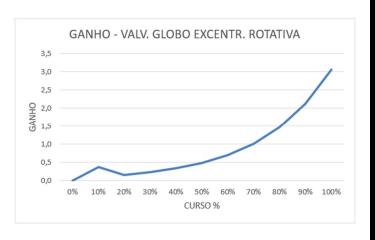
VEC®

Após esta breve explanação, podemos então falar sobre rangeabilidade, a qual com ΔP constante é a razão entre o CV_{max}/CV_{min} .

Dos gráficos de GANHO LINEAR, tanto válvula globo com obturador rotativo quanto VEC[®], considerando a região entre os intervalos equivalentes de mesmo ganho, vê-se que ambas têm a mesma rangeabilidade (\approx 6:1), como já era esperado.


Seguem agora os gráficos delas, porém segue a análise com característica igual porcentagem.

A válvula globo rotativa tem os seguintes valores:


RANGE: 44:1

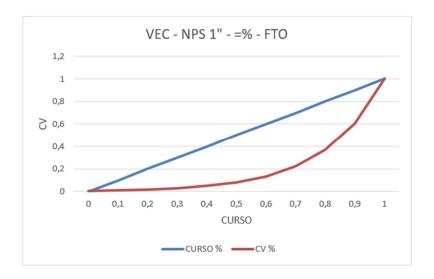
FAIXA DE CONTROLE: 20 a 85%

GANHO: 0,5 a 2,0 na faixa de controle.

CURSO	delta CURSO	CV	delta CV	GANHO
0%	0	0,0%	0	0,0
10%	0,1	3,7%	0,036986	0,4
20%	0,1	5,3%	0,016365	0,2
30%	0,1	7,7%	0,023606	0,2
40%	0,1	11,1%	0,034052	0,3
50%	0,1	16,0%	0,049118	0,5
60%	0,1	23,1%	0,070852	0,7
70%	0,1	33,3%	0,102201	1,0
80%	0,1	48,1%	0,147422	1,5
90%	0,1	69,3%	0,212652	2,1
100%	0,1	100,0%	0,306744	3,1

A válvula globo rotativa apresenta descontinuidade na faixa inicial do ganho, até 20% do curso, que a impede de realizar controle de baixas vazões.

Data: 10/12/14 Página 9 de 9


VEC®

A VEC® tem os seguintes valores:

RANGE: 150:1

FAIXA DE CONTROLE: 35 a 85%

GANHO: 0,5 a 2,0 na faixa de controle.

CURSO	delta CURSO	CV	delta CV	GANHO
0%	0	0,000000	0	0,0
10%	0,1	0,011003	0,011003	0,1
20%	0,1	0,01816	0,007157	0,1
30%	0,1	0,029973	0,011813	0,1
40%	0,1	0,04947	0,019497	0,2
50%	0,1	0,08165	0,032179	0,3
60%	0,1	0,134761	0,053111	0,5
70%	0,1	0,222419	0,087659	0,9
80%	0,1	0,367098	0,144678	1,4
90%	0,1	0,60589	0,238788	2,4
100%	0.1	1.00000	0.394114	3.9

A VEC®, aparentemente, está em desvantagem com a válvula globo rotativa, por ter faixa de controle menor. Esta aparente desvantagem deve-se ao fato de que o range da VEC® é 3 vezes maior e, por esta razão, permite controle em baixas vazões.