

APRESENTAÇÃO

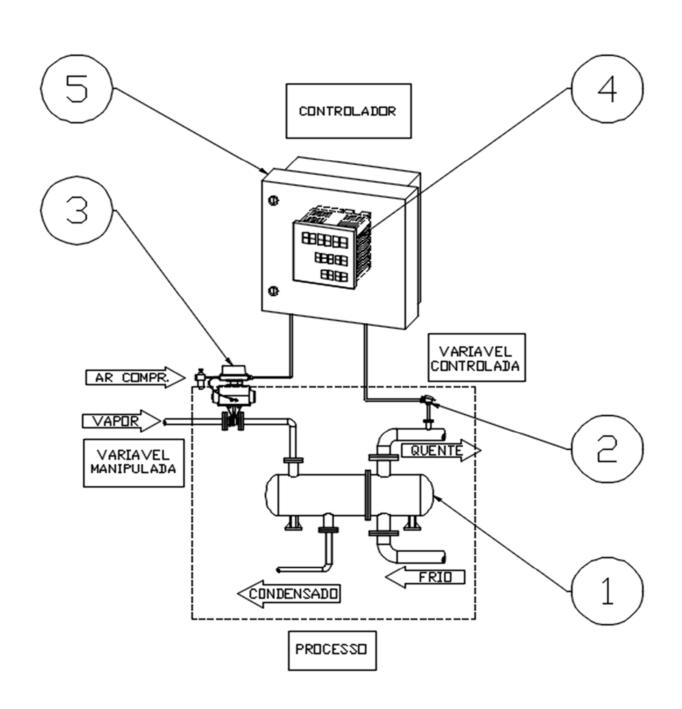
Os processos de aquecimento e resfriamento são semelhantes. Divergem apenas no sentido do fluxo da troca de calor.

Controle de temperatura é uma grandeza sempre recorrente em quase todos os setores industriais, como exemplo siderúrgico, metalúrgico, mineração, açúcar e álcool, agronegócio, óleo e gás, petróleo, químico, petroquímico, alimentício, etc.

Normalmente em processo de resfriamento são empregados como fluído refrigerante água gelada aditivada ou natural na temperatura entregue por torre de resfriamento. Nos processos de aquecimento, normalmente são utilizados vapor e óleo térmico.

Há uma grande variedade de equipamentos para troca térmica. Os mais utilizados são tanques encamisados, interna e externamente, com serpentina e também trocadores de placas, trocadores casco-tubo e, para aquecimento, há também casos de injeção direta de vapor, circulação de óleo térmico, ar quente, etc.

O escopo deste folheto é apenas dar informações básicas sobre o tema CONTROLE DE TEMPERATURA.


Iniciaremos com a malha de controle para aquecimento, discorremos sobre alguns detalhes da tecnologia de representação de engenharia e encerraremos com malha de controle de resfriamento.

Para especificação dos elementos da malha de controle orientamos entrar em contato com a Poligon. Daremos todas as instruções e informações necessárias para o sucesso do controle do seu processo de temperatura.

MALHAS DE CONTROLE DE TEMPERATURA

REPRESENTAÇÃO ESQUEMÁTICA DE SISTEMA DE AQUECIMENTO SIMPLES

COMPONENTES TÍPICOS DA MALHA DE CONTROLE

- 1 PROCESSO (EQUIPAMENTO)
- 2 ELEMENTO DE MEDIÇÃO (SENSOR)
- 3 ELEMENTO DE CONTROLE (VÁLVULA DE CONTROLE)
- 4 CONTROLADOR
- 5 PAINEL DE CONTROLE

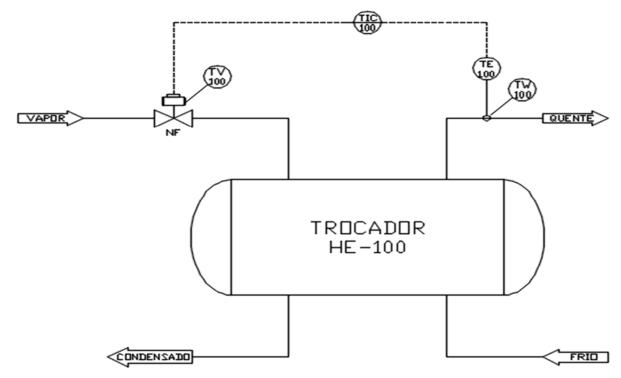
DESCRITIVO DOS COMPONENTES DO SISTEMA

A malha de controle é composta por blocos que desempenham as seguintes funções:

- 1. O bloco **"PROCESSO"** representa a operação desenvolvida na planta industrial. No exemplo do desenho, o processo é a troca de energia térmica que ocorre no equipamento "trocador de calor".
- 2. O bloco "VARIÁVEL CONTROLADA" representa a grandeza que se deseja manter constante. No exemplo do desenho, a variável que se deseja manter constante é a TEMPERATURA.
- 3. O bloco "VARIÁVEL MANIPULADA" representa a grandeza que é empregada para manter constante a variável controlada. No exemplo do desenho, a variável manipulada é a vazão de vapor. Controlando a quantidade de vapor (energia térmica) que entra no trocador de calor, é mantida constante a temperatura do fluído na saída do equipamento.
- 4. O bloco "CONTROLADOR" tem a responsabilidade da gestão da malha de controle. O controlador tem sob sua responsabilidade as seguintes atividades:
- Permite determinar o valor desejado da variável controlada ("set point"),
- Executa o algoritmo PID para corrigir eventual diferença entre o valor desejado ("set point") e a variável controlada (temperatura),
- Determina a posição de abertura da válvula de controle, modulando assim a vazão (variável manipulada) de vapor para controlar a temperatura (variável controlada).
- 5. O **PAINEL DE CONTROLE** é um gabinete, geralmente metálico, para abrigar os componentes responsáveis pelo controle e respectivas proteções elétricas e mecânicas.

A apresentação esquemática não é prática para trabalho. Para representar sistemas de controle são empregados fluxogramas de processos (tubulação e equipamentos industriais).

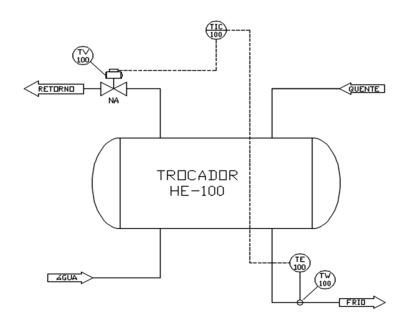
Esta forma de representar é conhecida como "P&ID – Process and Instrument Diagram") e é muito utilizada pelos engenheiros, projetistas e montadores de instrumentação.


A malha de controle é ser representada através de símbolos padronizados internacionalmente pela Norma ISA (International Society of Automation) S5.1 que estabelece os símbolos gráficos para identificação dos instrumentos e dos sistemas de instrumentação usados para medição e controle.

Para fins ilustrativos, segue um exemplo simplificado do "P&ID" da malha de controle de temperatura para aquecimento simples:

FLUXOGRAMA DE PROCESSO E INSTRUMENTAÇÃO PARA SISTEMA DE AQUECIMENTO SIMPLES

LEGENDA:


SÍMBOLO	SIGNIFICADO
TIC 100	CONTROLADOR INDICADOR DA TEMPERATURA
TV 100	VÁLVULA CONTROLADORA DA VAZÃO DE VAPOR
TE 100	ELEMENTO SENSOR DA TEMPERATURA NA SAÍDA DO TROCADOR DE CALOR
TW 100	"POÇO" PARA PROTEÇÃO QUÍMICA E MECÂNICA DO SENSOR DA TEMPERATURA

Para fins ilustrativos, segue um exemplo simplificado do "P&ID" da malha de controle de temperatura para resfriamento simples:

FLUXOGRAMA DE PROCESSO E INSTRUMENTAÇÃO PARA SISTEMA DE RESFRIAMENTO SIMPLES

LEGENDA:

SÍMBOLO	SIGNIFICADO
TIC 100	CONTROLADOR INDICADOR DA TEMPERATURA
TV 100	VÁLVULA CONTROLADORA DA VAZÃO DE ÁGUA
(TE)	ELEMENTO SENSOR DA TEMPERATURA NA SAÍDA DO TROCADOR DE CALOR
(TW)	"POÇO" PARA PROTEÇÃO QUÍMICA E MECÂNICA DO SENSOR DA TEMPERATURA

COMPARATIVO ENTRE AS MALHAS DE CONTROLE DE TEMPERATURA PARA AQUECIMENTO E RESFRIAMENTO

As diferenças entre as malhas são:

- O sentido de fluxo, bem como respectivos bocais de entrada e saída do fluído do processo, está em sentido inverso nos processos de aquecimento e resfriamento,
- O sentido de fluxo, bem como respectivos bocais de entrada e saída do fluido para resfriamento, está em sentido inverso nos processos processo de aquecimento e resfriamento,
- A condição de falha da válvula de controle deve ser determinada com foco na perda de produto e segurança da planta. No processo de aquecimento a válvula de controle é, normalmente, NF (normal fechada) e, no processo de resfriamento a válvula de controle é normalmente NA (normal aberta),
- No processo de resfriamento, a válvula de controle está montada na saída do trocador de calor para, desta forma, assegurar que o trocador sempre fique repleto de fluído de resfriamento.

CONCLUSÕES FINAIS

As estratégias de controle de processos envolvendo variável TEMPERATURA são muitas.

A sofisticação e complexidade impactam, e muito, no custo total do investimento e devem ser avaliadas sob a ótica da necessidade do processo, do produto e da viabilidade econômica.

Quanto aos elementos da malha de controle, orientamos entrar em contato com a Poligon.

Estamos a inteira disposição e teremos enorme satisfação em dar todas as instruções e informações necessárias para o sucesso do controle do seu processo de temperatura.

São Paulo, 08 de setembro de 2020

ENGENHARIA POLIGON